A New Set of Norms for Semantic Relatedness Measures
نویسندگان
چکیده
We have elicited human quantitative judgments of semantic relatedness for 122 pairs of nouns and compiled them into a new set of relatedness norms that we call Rel-122. Judgments from individual subjects in our study exhibit high average correlation to the resulting relatedness means (r = 0.77, σ = 0.09, N = 73), although not as high as Resnik’s (1995) upper bound for expected average human correlation to similarity means (r = 0.90). This suggests that human perceptions of relatedness are less strictly constrained than perceptions of similarity and establishes a clearer expectation for what constitutes human-like performance by a computational measure of semantic relatedness. We compare the results of several WordNet-based similarity and relatedness measures to our Rel-122 norms and demonstrate the limitations of WordNet for discovering general indications of semantic relatedness. We also offer a critique of the field’s reliance upon similarity norms to evaluate relatedness measures.
منابع مشابه
Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملMeasuring Semantic Relatedness Across Languages
Measures of Semantic Relatedness are well established in Natural Language Processing. Their purpose is to determine the degree of relatedness between two words without specifying the nature of their relationship. Most of these measures work only between pairs of words in a single language. We propose a novel method of measuring semantic relatedness between pairs of words in two different langua...
متن کاملComputing Semantic Relatedness using Wikipedia Link Structure
This paper describes a new technique for obtaining measures of semantic relatedness. Like other recent approaches, it uses Wikipedia to provide a vast amount of structured world knowledge about the terms of interest. Our system, the Wikipedia Link Vector Model or WLVM, is unique in that it does so using only the hyperlink structure of Wikipedia rather than its full textual content. To evaluate ...
متن کاملStudy of semantic relatedness of words using collaboratively constructed semantic resources
Computing the semantic relatedness between words is a pervasive task in natural language processing with applications e.g. in word sense disambiguation, semantic information retrieval, or information extraction. Semantic relatedness measures typically use linguistic knowledge resources like WordNet whose construction is very expensive and time-consuming. So far, insufficient coverage of these l...
متن کامل